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ELASTOPLASTIC ANALYSIS OF CIRCULAR CYLINDRICAL INCLUSION IN

UNIFORMLY STRESSED INFINITE HOMOGENEOUS MATRIX

by Alexander Mendelson

Lewis Research Center

SUMMARY

Equations have been derived and a method has been presented for performing an

elastoplastic analysis of a system consisting of a circular cylindrical inclusion in a homo-

geneous matrix uniformly stressed at infinity and in a condition of generalized plane strain.

The material properties of the inclusion and the matrix, including their stress-strain

curves, are assumed to be arbitrary and independent of each other. Several examples,

including the limiting cases of a hole and a rigid inclusion, are presented. It is shown

that the constraints imposed by the rigid inclusion sharply reduce both the stress and

strain concentration factors over those for the hole. The results for a system roughly

approximating a graphite fiber in a resin matrix indicate that the fiber acts nearly as a

rigid inclusion and that strain hardening properties of the matrix play only a minor role

in determining the plastic strain concentration factor for the case of plane strain.

INTRODUCTION

The importance of composite materials in aerospace applications, due primarily to
their potentially high strength to weight ratios, is well known. The actual design strength
of such materials is, however, frequently much lower than their potential strength. One
reason for this is that there may be load components perpendicular to the fiber axes. The
fibers then act as inclusions producing stress concentrations in the matrix, which is

already considerably weaker than the fibers.

An elastic analysis on the effect of a cylindrical inclusion in a homogeneous matrix

is presented in reference 1. Herein a more realistic elastoplastic analysis is made to
determine the stress and strain concentrations due to such inclusions. A complete anal-

ysis would have to include a large number of irregularly shaped and spaced inclusions as
well as the orthotropic character of the fibers. The present analysis is therefore merely



a first step, wherein a single circular inclusion in an infinite homogeneous matrix, uni-

formly loaded at infinity, is considered.

The method used in the analysis is the successive approximation or iterative tech-

nique for solving elastoplastic problems as outlined in references 2 and 3. This tech-

nique has been successfully used for the problem of an infinite plate with a hole in refer-

ences 4 and 6 and for a rigid inclusion in reference 7. In both cases, the plane stress

problem of a thin plate was considered. In the present analysis, the generalized plane

strain problem of an infinitely thick plate is treated for arbitrary matrix and inclusion

properties. Furthermore, Hencky’s total plasticity theory is used. Although the incre-

mental theory can be used with equal ease, the results shown in reference 6 indicate that

for this type of problem there is negligible difference between the total and incremental

theory. By using total plasticity theory an appreciable amount of computer time can be

saved.

The methods used in this report were developed by the author while at NASA Lewis

Research Center. The bulk of the research was carried out while the author was on leave

from Lewis at Case-Western Reserve University. The author acknowleges the sponsor-

ship during this period of the Advanced Research Projects Agency, Department of Defense,

through a contract administered by the Air Force Materials Laboratory. This report is

also being issued as an Air Force Materials Laboratory Technical Report.

SYMBOLS

a radius of inclusion

A, B integration constants

E elastic modulus

e ratio of strain to yield strain

K,, Kg, Kg constants defined by eq. (18)

m ratio of slope of linear strain-hardening curve to elastic modulus

P, Q, R plastic strain functions defined by eq. (4)

r radial coordinate

S ratio of stress to yield stress

S ratio of applied uniform stress at infinity to yield stress

T ratio of average axial stress due to end loads to yield stress

U dimensionless radial displacement defined by eq. (1)
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u radial displacement

a ratio of matrix yield stress to inclusion yield stress

^ ratio of matrix elastic modulus to inclusion elastic modulus

e strain

p. Poisson’s ratio

p dimensionless radius, r/a

p maximum value of p used in computations

p radius to plastic zone boundary

a stress

Subscripts:

e equivalent

I inclusion

M matrix

o yield

r radial

z axial

0 tangential

Superscript:

p plastic

ANALYSIS

General Relations

Consider an infinite plate uniformly loaded at infinity as shown in figure 1. Be-
cause of the symmetry, the problem is most simply cast into polar coordinates.
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Figure 1. Infinite body with circular inclusion.

The dimensionless quantities used in this report are defined as follows:

r -^P
a

r "Q zo r o o q zsr ^ ’ -^ - "-o- e ^
(1)

^ r ^ r
0 0

U -ll- -llE
^o ^o J

where a and e are the yield stress and yield strain, respectively (these will be more

precisely defined later), a is the radius of the inclusion, and u is the radial displace-

ment. The equilibrium, compatibility, and stress-strain relations can be written as
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^r ^ ^dp p

de0= eILLe0
^ ~^~ - (2)

e^ S^ ^(S, + S,) + e^
e0 S0 4(S^ + S^) + e)g

ez sz ^r + S0) + C constant

Equations (2) can be integrated to give the following relations:

S^ A + i^ P(p) -1^_ Q(p)
p4 2(1 ^) 2(1 /)

S
^

A B -,- ---1--- P(p) + J-^/- Q(p) +
1 R(p)

p^ 2(1 ^z) 2(1 ^) 1 ^z
Sz /^^r + S0) + ei + epe + e^

e^ (l ^ 2^^ + (! + /,) A + A J_^ [p(p) + Q(p)] + 1^2^ e^ ^e^2 2 1 ju 1- 1 ^ (-)

e^ (1 ^ 2^)A (l + ^ ^- +
l lJL^^P(p) + Q(p)] ^e^2 2 1 ^i L

e^ T 2 lim -1- [i f (S^. + S^p dp + /’ (e^ + e^p dp
p-.co p2

U (l p. 2| 2)Ap (l + ^ + l l-^ prp^ + C^p)’] /,pe
p 2 1 ^

L J z J
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where

fP eP eP ^P(P) / -r--- dp

c/c

Q(P) s J- 1^ P(e^ + e^dp
2 /c

P

R(P) ^eP (1 ^)eP

and T is the dimensionless average axial stress due to the end loads. The constants

A and B will depend on the boundary conditions as will be shown, and the lower limit on

the integrals c will equal zero for the inclusion and one for the matrix.

The plastic strains are related to the total strains by the modified Prandtl-Reuss

relations (ref. 2).

e? ^ (^, 00 e,)

e
e

(5)

e? 3^ ^e ^ ^(R) J

where

1/2

ee =^ [(er e0)2+ (er ez)2+ (e0 ez)2] (6)
j

and e is related to e through the stress-strain curve and the relation
P e

ep e, | (1 . ^ (7)

where S the dimensionless equivalent stress, is a function of the equivalent plastic

strain e and is the ordinate of the dimensionless uniaxial stress-strain curve as shown
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Ratio of strain to yield strain, e

(b) For linear strain hardening.

Figure 2. Dimensionless uniaxial stress-strain curve.
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in figure 2(a). For the case of linear strain hardening, equation (7) can be solved for e

to give

eg 2 (1 + H)
t

e. ----3------ (8)p
l . -- 2 (i ^)

1 m 3

where m is the ratio of the slope of the stress-strain curve in the plastic range to the

elastic modulus, as shown in figure 2(b). For a perfectly plastic material, equations (7)
and (8) reduce to

% e 2 (1 + n) (8a)p e g

The above equations are valid both in the inclusion and in the matrix. The constants

A and B will be different for the matrix and for the inclusion as will the material prop-

erties. We will henceforth distinguish between the matrix and the inclusion by using the

subscripts M and I for matrix and inclusion, respectively.

Evaluation of Constants

An evaluation of the constants makes use of the boundary conditions. As previously

noted for the inclusion

c 0, 0 < p < 1

and for the matrix

c 1, 1 ^ p

It also follows from the first or second equation (eq. (3)) that, for finite stresses at

P 0,

B; 0 (9)

Substituting the values of S and Sn from equations (3) into the expression for e

and taking the indicated limit gives
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^ T ^M -^^(^ (10)
1 ^M

Let the dimensionless stress at p o be designated by

^)
"00

^M

where cr^ is the yield stress of the matrix. Then, from the first of equations (3),

AM S^ PM^ + -^f-QM^
2(l ^) 2(l 4)

where, from equations (4),

/ eP e11 ^1
P^(oo) rM ^M

^
’ (11)

QM(00)

Hence,

AM S^ PM(0) (12)
2(1 ^)

Note that, since the plastic strains die out as p increases, the upper limit in equa-
tion (11) may be replaced by some arbitrary radius p where p is greater than
the radius of the plastic zone. Thus,

?(.) r-^M ^JY
Pmax ^ ra^lus ^ plastic zone

The two remaining constants Aj and B,, can be determined from the conditions
that the radial stress and displacement should be continuous across the matrix-inclusion
interface, that is,
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Orf(a) or^(a)

u^(a) u^(a)

or

^(D^W1)
^ol

or

s,i(D "s,^i) (i4)

where

a . ^̂1
is the ratio of the matrix yield stress to the inclusion yield stress. Note that S^ is

defined as the ratio of the inclusion radial stress to the inclusion yield stress and S^
is defined as the ratio of the matrix radial stress to the matrix yield stress. Similarly,

i3Uj(l) aU^(l) (I5)

where

^, ^,^ ^ (16)

EI ^oi ^oM

and E and E, are the elastic moduli of the matrix and inclusion, respectively.

Fr^m equations (3), (9), (12), (14), and (15) and noting that P^(l) Q^(l) 0,

A^ K^ + K^l) + KgQ^l) + K4P^() + KgC^ -^i r (17)

BM KsSoo + WD + K7P^() +

^
Kge, j

where
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K
2(1 2M}a ’

1 1 + ^ + (1 + /^)(1 2^)^

K 1
2

2(1 ^2)
1 ^1 ^ + ^M ^^
2(1 ^1^ ^3 1 + ^ + (1 + ^)(1 2^

K ________-^________
4 1 + ^ + (1 + ^)(1 2^ ^ (18)

K!Kc -1 1
3 a

(1 2^)3

^ ---9-- K!
a"

K5
K^ -----2(1 ^)

^ f^M ^l)^\ " / -y

Note that the coefficients K.. through Ko are functions of the four material constants

^P ^M’ a and /3-

r

Computation Procedure

The stresses, total strains, and plastic strains can now be computed by the succes-

sive approximation or iterative method described in reference 2. The inclusion and the

matrix are each divided into finite radial intervals. For the inclusion, the stations range

from zero to 1. For the matrix, the stations range from p 1 to p p^ny wnere

p is an arbitrary dimensionless radius larger than the radius of the plastic zone.
max

Initially, the radius of the plastic zone is not known; therefore, <ene must guess at a
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reasonable value for p It may be desirable to change this value after the first iter-max
ation so that most of the stations are in the plastic zone.

The coefficients K< through Ko are computed once from equation (18). Assuming
all the plastic strains to be zero so that P Q P and Q^ are all zero, A, and
B,, are computed from equation (17), A,, from equation (12), and e from equation

(10). Equations (3) now give the complete elastic solution for the inclusion and the ma-

trix. Beginning with the elastic solution, the iterative scheme for obtaining the elasto-
plastic solution proceeds as follows:

(1) Using the values of total strains just computed, the equivalent total strain e is

calculated at every station of the inclusion and the matrix by equation (6).
(2) The equivalent plastic strain e at every station is determined from equation (7)

and the stress-strain curve (or eq. (8) for linear strain hardening). If e at any station

is less than zero, there is no plastic flow at that station and the plastic strains are set
equal to zero at that station.

(3) The individual plastic strains at every station are computed by means of equa-
tions (5).

(4) The plastic strain integrals P,, Q P and Q are computed from equa-
tion (4) for every station.

(5) e A,,, A,, and B,, are calculated from equations (10), (12), and (17).
(6) The stresses and strains are then computed from equations (3).
(7) Return to step (1) and continue iterating until convergence is obtained, that is,

until two successive solutions differ by less than some arbitrarily preassigned value.
The outlined computation scheme, which was programmed for a digital computer,

gives rapidly and accurately the complete stress and strain fields both in the inclusion

and the matrix. Both the elastic properties and stress-strain curves will, of course,
be different in the two media.

RESULTS AND DISCUSSION

The technique presented will now be illustrated for three different cases: The two
extreme cases of a plate with a void and a plate with a rigid inclusion, and the case of a

relatively weak matrix with a relatively strong inclusion. In all cases, the condition of

plane strain with e 0 is assumed.z

Plate With Hole or Void

A plate with a hole represents the limiting case
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a oo ^ oo (19)

The calculation proceeds as described except that A, need not be computed. The stress

and strain fields are obtained only in the matrix. Some results are shown in figure 3.

In figures 3(a) and (b) the effective stress and strain concentration factors are

plotted against the applied stress at infinity for various values of the strain hardening

parameter m,,. The effective stress concentration factor is defined as the ratio of

effective or equivalent stress at the edge of the hole to the equivalent stress at infinity;

"r-

\\ \ Strain

\\\ ^< hardening
’5 \\< \^ parameter,

| \\ ^^. mM

\ ^’’’’’-*^,

I X^ Y^^--

.5 1.0 1.5 2.0 2.5
Dimensionless load, S^,

(a) Effective stress concentration factor.

Figure 3. Effect of strain-hardening parameter on plane-strain case of infinite plate with
hole. Ratio of matrix yield stress to inclusion yield stress, ; ratio of matrix elastic
modulus to inclusion elastic modulus, .
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60i--

"g Strain /

^ hardening /
5 parameter, /

| 20 ^^ ’5^^^^^-^

0
.5 1.0 1.5 2.0 2.5

Dimensionless load, Soo
(b) Effective strain concentration factor.

Figure 3. Continued.

that is,

SJ1) S (1)
K -e-- ---e---- (20)CT Sg() (1 2^)8,,

where
9 9 9 1/"

(S^ S,)2 + (SQ S,)2 -.- (S, S^)2
s^ --------^-----

The elastic stress concentration factor as defined is readily shown as
<,.

I------3---K (elastic) /I + ---"---
V (1 2.,)2

For a value of jj.-.^ of 0. 35, which is the value used in these calculations, the elastic

stress concentration factor is equal to 5. 86, which is the common starting point of all

the curves in figure 3(a).
Note that, for the case of plane stress, the stress concentration factor is independent

of Poisson’s ratio and is equal to 2 for the elastic case. The large initial value of the

stress concentration factor for the case of plane strain does not mean, however, that

14



plastic flow will start at a lower load than for plane stress. On the contrary, it can

readily be shown that the equivalent stress S will equal 1 at the hole for a value of

S^ 0. 569 compared with S^ 0. 5 for plane stress. For a plate without a hole, S^
must equal 3. 33 (for p. 0. 35) in order that S 1, whereas, for the plane stress case,
S 1 when S^ 1. Thus, it requires more than 3 times the load for yielding to occur

in the plane-strain case compared with the plane stress case. However, the effect of a

hole is felt much more for plane strain than plane stress, so that the hole weakens the

plate by a factor of almost 6 for plane strain compared with a factor of 2 for plane stress.

The result is that the load to produce yielding at the hole is equal to 0. 569 for plane

strain compared to 0. 5 for plane stress as indicated previously. The plane-strain case

still requires a larger load for yielding to occur than the plane-stress case, but the dif-

ference is no longer as great when there is a hole present.

Whether definition (20) is appropriate depends on how the stress and strain concen-

tration factors are to be used. The concentration factors, by definition, give the ratios

of the stress or strain with the hole present to the corresponding values without the hole.

They therefore represent the weakening effect of the hole. The equivalent stress and

equivalent strain are used herein to represent the concentration factors because they

are the determining quantities in plastic flow. If some other quantity is more useful in

determing failure, then that quantity should be used rather than the equivalent stress or

equivalent strain in defining the concentration factors.

Figures 3(a) and (b) show how the stress concentration factor decreases with load

and the strain concentration factor increases with load because the material is flowing

plastically. The importance of strain hardening is readily evident. It is interesting to

note that, although without strain hardening the stress concentration factor decreases

monotonically with load, the presence of strain hardening introduces a minimum point

in the stress concentration as function of load curve. For a high enough load, the strain

hardening of the material is sufficient to overcome the stress relaxation due to plastic

flow, and the stress concentration factor starts rising. This effect does not occur for

the plane stress case (see ref. 6), probably, because the additional axial constraint

inherent in the plane-strain case is missing.

The strain concentration factor used in figure 3(b) is defined by

’
K e-^- ^----- (21)

ee(’<’) IC ^M"1 2’^..
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8,--

Strain /
<=? hardening /
^i" parameter, / /
I ’"M / /

1 4 / ^^/^

0
.5 1.0 1.5 2.0 2.5

Dimensionless load, S^o
(c) Plastic zone radius.

Figure 3. Concluded.

For the elastic case,

2 r 2t 1/2

^ (^M) 3 + (1 2^ S,
0

so that, for p,,, 0. 35,

K^ 5. 86 K^ ^.

Figure 3(c) shows the growth of the plastic zone with load. Again the effect of strain ^hardening is very evident. The plate becomes completely plastic when S^ equals 3o

Plate With Rigid Inclusion

For a rigid inclusion

16
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a /3 0 (22)

The results using these values are shown in figure 4. Note the very large difference be-

tween these results and those for the plate with the hole. The restraints produced by the

inclusion greatly lower both the stress and strain concentration factors. Furthermore,

the effect of strain hardening is no longer as great. The plastic zone size is greatly re-

duced as compared with the hole (figs. 3(c) and 4(c)).

’ ^0\-- \

1 ^\^^^^ strain
2 1-5 ^^^^^ ^^ hardening

^^^^^^ ^^--^ parameter,

^^ ^^ ^^"’-^

1.0
(a) Effective stress concentration factor.

2.4,--

S _^==- 05

"1.5 2.0 2.5 3.0 3.5
Dimensionless load, Sy,

(b) Effective strain concentration factor.

Figure 4. Effect of strain-hardening parameter on inclusion. Ratio of matrix yield stress
to inclusion yield stress, 0; ratio of matrix elastic modulus to inclusion elastic modulus,-
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/̂
3.0

2.5 /
1/1"

10

^ /
-TO /

2.0 /

L? ? ’2.0" 2.5 3.0 3.5 ^Dimensionless load, Soo
(c) Plastic zone radius.

<
Figure 4. Concluded.
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2.0 (---

% ^^^^S’^^^- Strain

-E ^^$^^- ^~~~^ hardening
S ^^^^-~^ ^^~~-----^ parameter,

(a) Effective stress concentration factor.

2.5 i--.
’^D

^
1-~

"

"1.5 2.0 2.5 3.0 3.5
Dimensionless load, S^

(b) Effective strain concentration factor.

Figure 5. Effect of strain-hardening parameter on plane-strain case of infinite plate with
,’ fiber inclusion. Ratio of matrix yield stress to inclusion yield stress, 0.1; ratio of matrix

elastic modulus to inclusion elastic modulus, 0.02.

19



Strain
hardening
parameter, 4

"^
0 to 0.2

^5

4

’?

"̂s^

^^^^1.5 2.0 2.5 3.0 3.5
Dimensionless load, S^
(c) Plastic zone radius.

Figure 5. Concluded.
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Inclusion With a 0. 1, (3 0.02

As a final example, a matrix inclusion combination with a 0. 1 and /3 0. 02 was

considered. These properties correspond roughly to a graphite fiber in a resin matrix.

The results are shown in figure 5. Note the similarity of these results to those of fig-

ure 4 for the rigid inclusion. Of particular interest is the fact that the strain-hardening

properties of the matrix are relatively unimportant. Only one curve was drawn in fig-

ure 5(c) because the difference between the different strain-hardening parameters is

very small.

.?

\ Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, September 28, 1967,
129-03-08-04-22.
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